Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Journal of Korean Neurosurgical Society ; : 511-524, 2023.
Article in English | WPRIM | ID: wpr-1001278

ABSTRACT

Objective@#: This animal model aimed to compare the rat group that received brain irradiation and did not receive additional treatment (only saline) and the rat group that underwent brain irradiation and received Granulocyte colony stimulating factor (G-CSF) treatment. In addition, the effects of G-CSF on brain functions were examined by magnetic resonance (MR) imaging and histopathologically. @*Methods@#: This study used 24 female Wistar albino rats. Drug administration (saline or G-CSF) was started at the beginning of the study and continued for 15 days after whole-brain radiotherapy (WBRT). WBRT was given on day 7 of the start of the study. At the end of 15 days, the behavioral tests, including the three-chamber sociability test, open field test, and passive avoidance learning test, were done. After the behavioral test, the animals performed the MR spectroscopy procedure. At the end of the study, cervical dislocation was applied to all animals. @*Results@#: G-CSF treatment positively affected the results of the three-chamber sociability test, open-space test and passive avoidance learning test, cornu Ammonis (CA) 1, CA3, and Purkinje neuron counts, and the brain levels of brain-derived neurotrophic factor and postsynaptic density protein-95. However, G-CSF treatment reduced the glial fibrillary acidic protein immunostaining index and brain levels of malondialdehyde, tumor necrosis factor-alpha, nuclear factor kappa-B, and lactate. In addition, on MR spectroscopy, G-CSF had a reversible effect on brain lactate levels. @*Conclusion@#: In this first designed brain irradiation animal model, which evaluated G-CSF effects, we observed that G-CSF had reparative, neuroprotective and anti-neurodegenerative effects and had increased neurotrophic factor expression, neuronal counts, and morphology changes. In addition, G-CSF had a proven lactate-lowering effect in MR spectroscopy and brain materials.

2.
Journal of Korean Neurosurgical Society ; : 873-881, 2021.
Article in English | WPRIM | ID: wpr-915596

ABSTRACT

Objective@#: Peripheral nerve injuries occur mostly as a result of mechanical trauma. Due to the microvascular deterioration in peripheral nerve damage, it becomes challenging to remove free oxygen radicals. Gallic acid is a powerful antioxidant with anti-inflammatory effects and a free radical scavenger. The purpose of the study is to show that gallic acid contributes to the restorative effect in mechanical nerve damage, considering its antioxidant and anti-inflammatory effects. @*Methods@#: Thirty male Sprague Dawley albino mature rats were included in the study. Ten of them constituted the control group, 10 out of 20 rats for which sciatic nerve damage was caused, constituted the saline group, and 10 formed the gallic acid group. Post-treatment motor functions, histological, immunohistochemical, and biochemical parameters of the rats were evaluated. @*Results@#: Compared to the surgery+saline group, lower compound muscle action potential (CMAP) latency, higher CMAP amplitude, and higher inclined plane test values were found in the surgery+gallic acid group. Similarly, a higher nerve growth factor (NGF) percentage, a higher number of axons, and a lower percentage of fibrosis scores were observed in the surgery+gallic acid group. Finally, lower tissue malondialdehyde (MDA) and higher heat shock protein-70 (HSP-70) values were determined in the surgery+gallic acid group. @*Conclusion@#: Gallic acid positively affects peripheral nerve injury healing due to its anti-inflammatory and antioxidant effects. It has been thought that gallic acid can be used as a supportive treatment in peripheral nerve damage.

3.
Clinical Psychopharmacology and Neuroscience ; : 84-92, 2021.
Article in English | WPRIM | ID: wpr-874492

ABSTRACT

Objective@#Autism spectrum disorder (ASD) is a severely disabling psychiatric disease characterized by impairments in communication and social skills. Although efforts have been made to explore the etiology of ASD, its pathophysiology remains unclear. This issue is rendered more challenging by confounding data about the effects of vaccination on disease etiology. In this study, therefore, we investigated the neurodevelopmental effects of maternal tetanus toxoid administration on rat offspring. We hypothesized that the vaccine affects the sociability and preference for social novelty of rat offspring as well as the production of immunological and neurotrophic factors, including tumor necrosis factor-alfa (TNF-α), neuregulin-1 (NRG-1), neuron growth factor (NGF), and oxytocin. @*Methods@#The study involved 12 female and 4 male adult Sprague−Dawley rats (238 ± 10 g), which were assigned to two groups. Group 1 (control group) was given 0.5 ml of normal saline (0.9% NaCl) on the 10th day of pregnancy, whereas Group 2 (experimental group) was administered 0.5 ml of tetanus vaccine (tetanus toxoid, 40 IU). @*Results@#Maternal tetanus toxoid administration exerted beneficial effects on the sociability and explorative behaviors of the rats. The brain tissue levels of TNF-α, NGF, NRG-1, and oxytocin were higher in the experimental group than those among the controls. All these significant differences were found in both the male and female rats. @*Conclusion@#This study is the first to demonstrate the advantages of tetanus toxoid administration in relation to the sociability and explorative behaviors of rat offspring. The results showed that the vaccine also influences NRG-1, neuregulin, and oxytocin production.

4.
Journal of Gynecologic Oncology ; : 328-333, 2014.
Article in English | WPRIM | ID: wpr-202217

ABSTRACT

OBJECTIVE: To investigate whether granulocyte-colony stimulating factor (G-CSF) can decrease the extent of ovarian follicle loss caused by cisplatin treatment. METHODS: Twenty-one adult female Sprague-Dawley rats were used. Fourteen rats were administered 2 mg/kg/day cisplatin by intraperitoneal injection twice per week for five weeks (total of 20 mg/kg). Half of the rats (n=7) were treated with 1 mL/kg/day physiological saline, and the other half (n=7) were treated with 100 microg/kg/day G-CSF. The remaining rats (n=7, control group) received no therapy. The animals were then euthanized, and both ovaries were obtained from all animals, fixed in 10% formalin, and stored at 4degrees C for paraffin sectioning. Blood samples were collected by cardiac puncture and stored at -30degrees C for hormone assays. RESULTS: All follicle counts (primordial, primary, secondary, and tertiary) and serum anti-Mullerian hormone levels were significantly increased in the cisplatin+G-CSF group compared to the cisplatin+physiological saline group. CONCLUSION: G-CSF was beneficial in decreasing the severity of follicle loss in an experimental rat model of cisplatin chemotherapy.


Subject(s)
Animals , Female , Anti-Mullerian Hormone/blood , Antineoplastic Agents/toxicity , Biomarkers/blood , Cisplatin/toxicity , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Fertility Preservation/methods , Granulocyte Colony-Stimulating Factor/therapeutic use , Ovarian Follicle/drug effects , Primary Ovarian Insufficiency/blood , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL